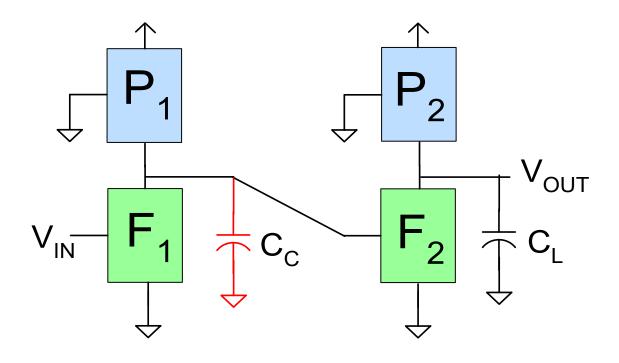
EE 435

Lecture 15

Compensation of Feedback Amplifiers

Analysis of <u>Internal Node</u> Compensated Two-Stage Op Amps

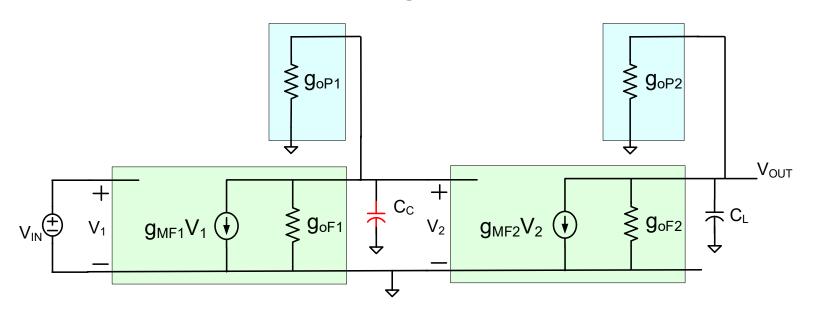


Consider single-ended input-output (differential analysis only slightly different)

Can't get everything but can get most of the small-signal results

Since internal node compensated, must have p₁<<p₂

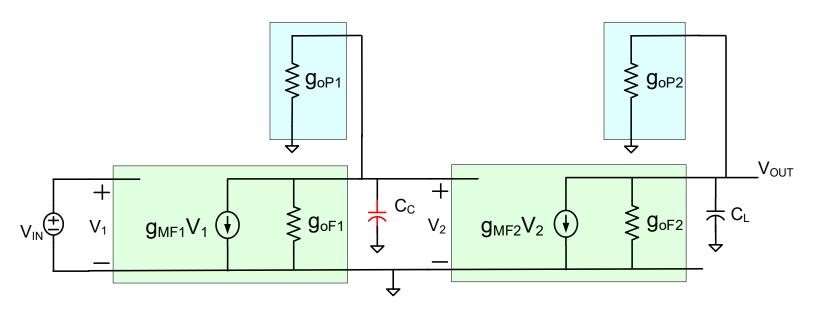
Analysis of Internal Node Compensated Two-Stage Op Amps



$$\begin{aligned} &V_{2}\left(sC_{_{C}}+g_{_{oF1}}+g_{_{oP1}}\right)+g_{_{mF1}}V_{_{IN}}=0\\ &V_{_{OUT}}\left(sC_{_{L}}+g_{_{oP2}}+g_{_{oF2}}\right)+g_{_{mF2}}V_{_{2}}=0 \end{aligned}$$

$$A_{V}(s) = \frac{-g_{mF1}}{sC_{C} + g_{oF1} + g_{oP1}} \bullet \frac{-g_{mF2}}{sC_{L} + g_{oP2} + g_{oF2}}$$

Analysis of Internal Node Compensated Two-Stage Op Amps



$$\boldsymbol{A}_{\text{V0}} = \left(\frac{\boldsymbol{g}_{\text{mF1}}}{\boldsymbol{g}_{\text{oF1}} + \boldsymbol{g}_{\text{oP1}}}\right) \left(\frac{\boldsymbol{g}_{\text{mF2}}}{\boldsymbol{g}_{\text{oF2}} + \boldsymbol{g}_{\text{oP2}}}\right)$$

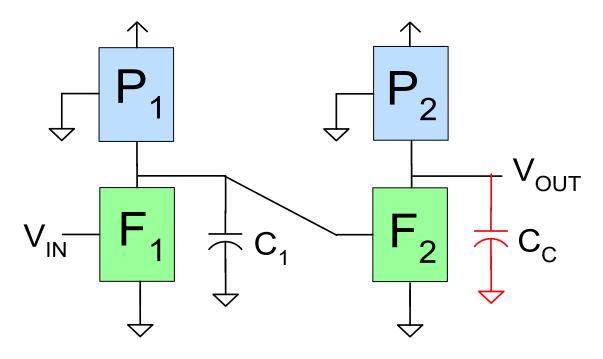
$$\left|\boldsymbol{p}_{1}\right| = \frac{\left(\boldsymbol{g}_{\mathsf{oF1}} + \boldsymbol{g}_{\mathsf{oP1}}\right)}{\boldsymbol{C}_{\mathsf{C}}}$$

$$\left| \mathbf{p_2} \right| = \frac{\left(\mathbf{g_{oF2}} + \mathbf{g_{oP2}} \right)}{\mathbf{C_L}}$$

$$BW = \left| p_1 \right|$$

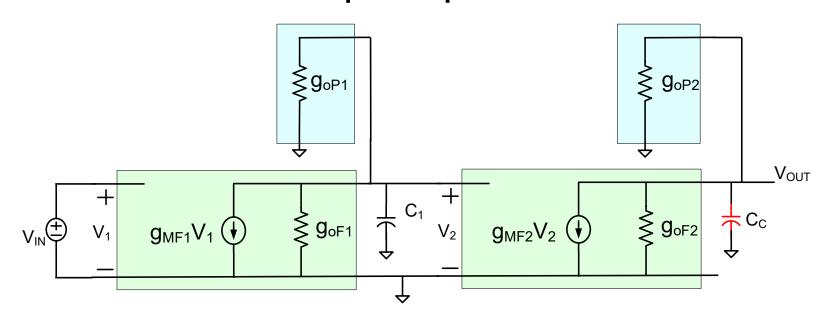
$$\mathbf{GB} = \frac{\mathbf{g}_{\mathsf{mF1}}\mathbf{g}_{\mathsf{mF2}}}{\left(\mathbf{g}_{\mathsf{oF2}} + \mathbf{g}_{\mathsf{oP2}}\right)\!\mathbf{C}_{\mathsf{C}}}$$

Analysis of <u>Load</u> Compensated Two-Stage Op Amps



Can't get everything but can get most of the small-signal results

Analysis of Load-Compensated Two-Stage Op Amps



$$\mathbf{A}_{\text{V0}} = \left(\frac{\mathbf{g}_{\text{mF1}}}{\mathbf{g}_{\text{oF1}} + \mathbf{g}_{\text{oP1}}}\right) \left(\frac{\mathbf{g}_{\text{mF2}}}{\mathbf{g}_{\text{oF2}} + \mathbf{g}_{\text{oP2}}}\right)$$

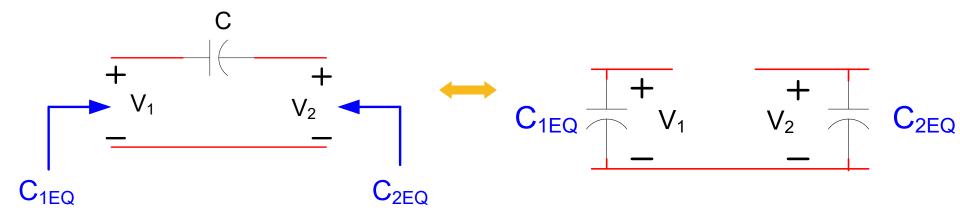
$$\left|\boldsymbol{p}_{1}\right| = \frac{\left(\boldsymbol{g}_{oF1} + \boldsymbol{g}_{oP1}\right)}{\boldsymbol{C}_{1}}$$

$$\left| \mathbf{p_2} \right| = \frac{\left(\mathbf{g_{oF2}} + \mathbf{g_{oP2}} \right)}{\mathbf{C_c}}$$

$$\mathbf{BW} = \left| \mathbf{p_2} \right|$$

$$\mathbf{GB} = \frac{\mathbf{g}_{\mathsf{mF1}}\mathbf{g}_{\mathsf{mF2}}}{\left(\mathbf{g}_{\mathsf{oF1}} + \mathbf{g}_{\mathsf{oP1}}\right)\!\mathbf{C}_{\mathsf{C}}}$$

Miller Capacitance - Review

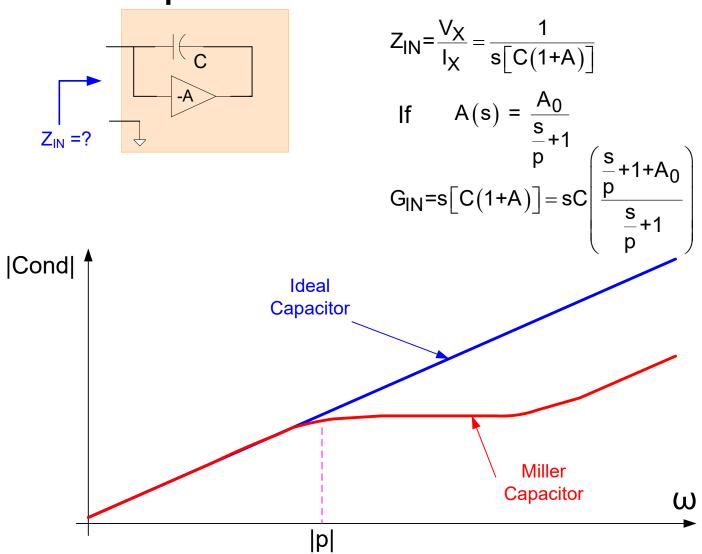


If
$$V_2 = -AV_1$$
 then for A large

$$C_{1EQ} = C(1+A) \approx CA$$
 $C_{2EQ} = C(1+\frac{1}{A}) \approx C$

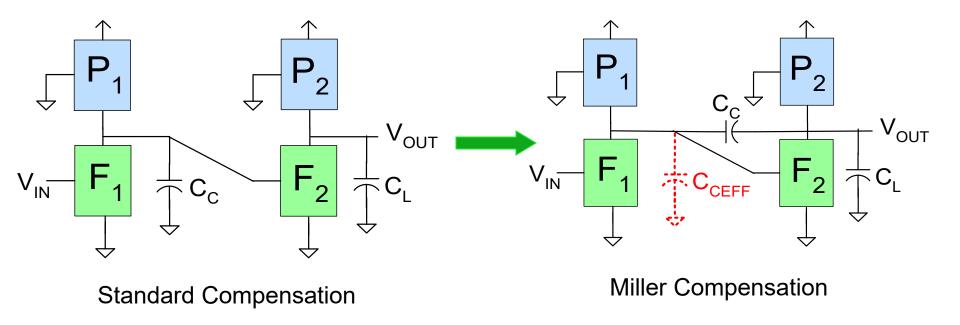
- If A changes with frequency, C_{1EQ} and C_{2EQ} are no longer pure capacitors
- More useful for giving a concept than for accurate actual analysis because of frequency dependence of A

Miller Capacitance - Review



Does not behave as a capacitor for $\omega > p$

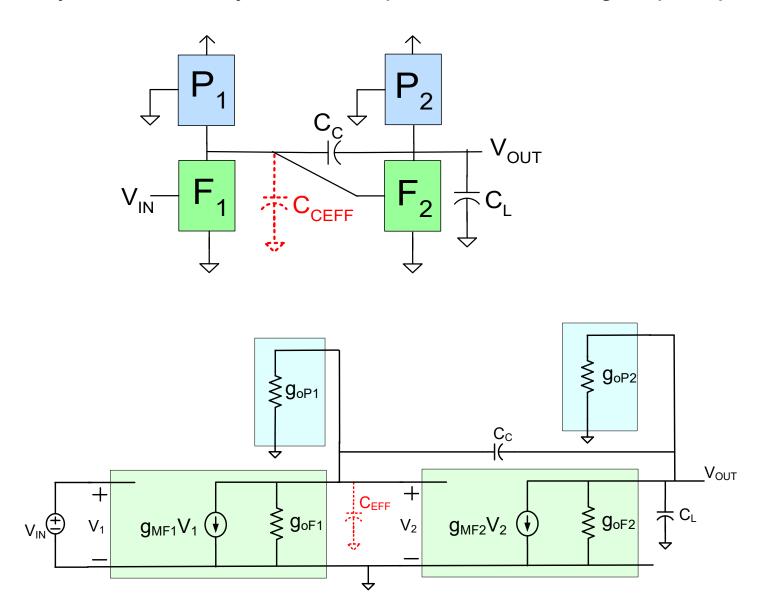
Internal Miller-Compensated Two-Stage Op Amp

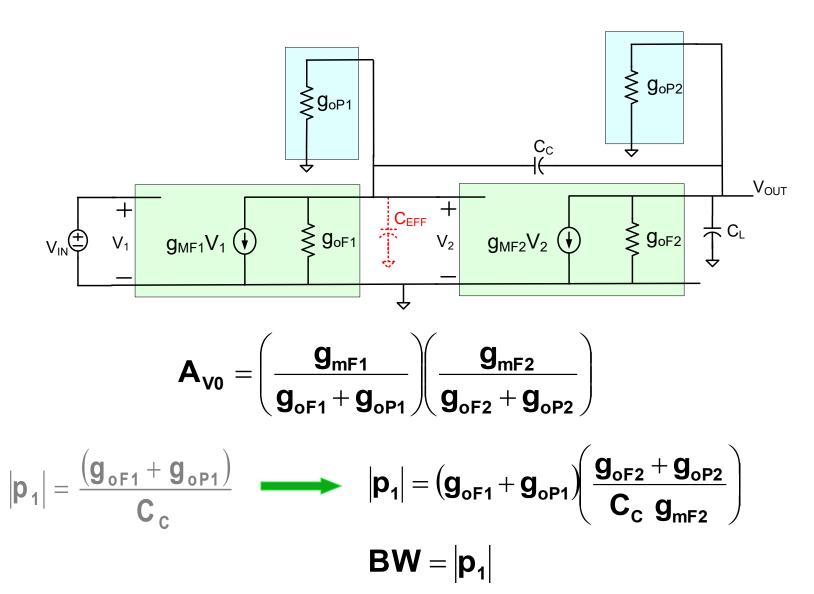


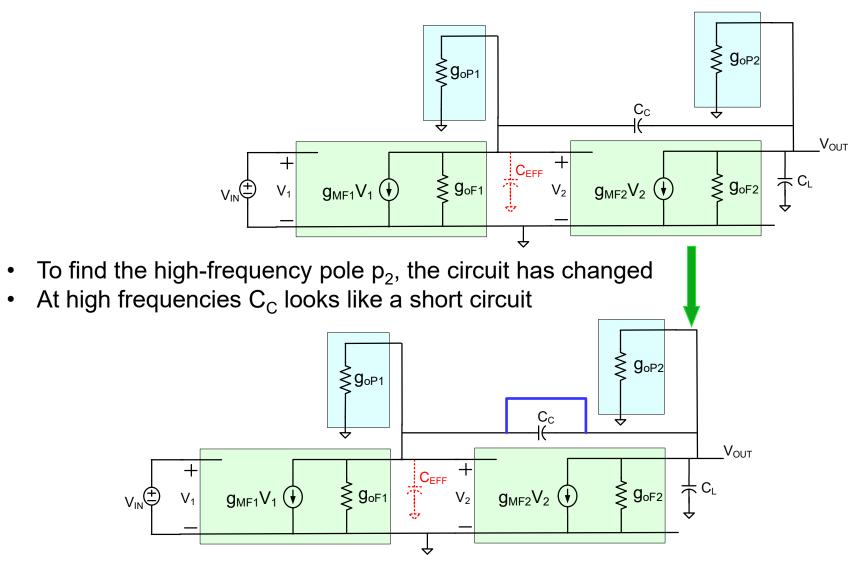
The second stage amplifier can be used to create a Miller capacitance at its input with no circuit overhead!

Compensation capacitance reduced by approximately the gain of the second stage! (the value of the two C_c's are not the same)

Since the gain of the second stage is not constant, however, a new analysis is needed

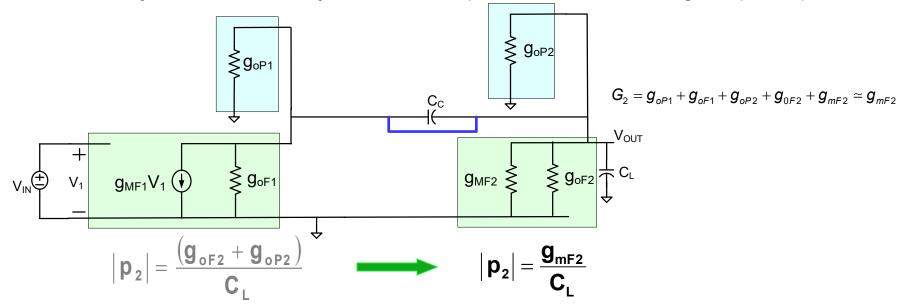






Note the F2 block is now "diode connected" at high frequencies

$$G_2 = g_{oP1} + g_{oF1} + g_{oP2} + g_{oF2} + g_{mF2} \simeq g_{mF2}$$

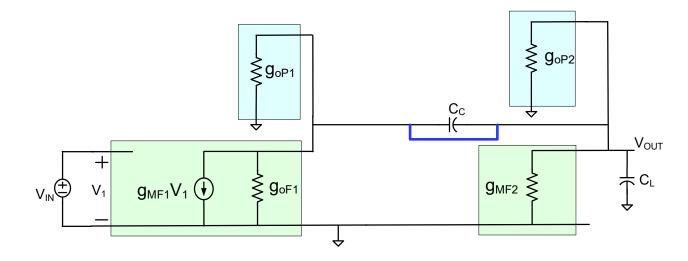


Will be shown later that C_C introduces a zero in the gain function

$$\bm{A}_{\text{V0}} = \left(\frac{\bm{g}_{\text{mF1}}}{\bm{g}_{\text{oF1}} + \bm{g}_{\text{oP1}}}\right) \left(\frac{\bm{g}_{\text{mF2}}}{\bm{g}_{\text{oF2}} + \bm{g}_{\text{oP2}}}\right) \quad \text{BW} = \left(g_{\text{oF1}} + g_{\text{oP1}}\right) \left(\frac{g_{\text{oF2}} + g_{\text{oP2}}}{C_{\text{C}} \ g_{\text{mF2}}}\right) = \frac{g_{\text{oF1}} + g_{\text{oP1}}}{C_{\text{EFF}}}$$

$$GB = \frac{g_{mF1}g_{mF2}}{(g_{oF2} + g_{oP2})C_c}$$
If zero does not affect GB
$$GB = \frac{g_{mF1}}{C_c}$$

$$A(s) \simeq \frac{\left(\frac{s}{z_{1}} + 1\right)g_{mF1}g_{mF2}}{s^{2}C_{c}C_{L} + sC_{c}g_{mF2} + (g_{0F1} + g_{0P1})(g_{0F2} + g_{0P2})}$$



$$|p_2| = \frac{(g_{oF2} + g_{oP2})}{C_L}$$

$$\left| \boldsymbol{p_2} \right| = \frac{\boldsymbol{g_{mF2}}}{\boldsymbol{C_L}}$$

 $|\mathbf{p_2}| = \frac{\mathbf{g_{mF2}}}{\mathbf{C}}$ |p₂| has increased!

$$\bm{A}_{\text{V0}} = \left(\frac{\bm{g}_{\text{mF1}}}{\bm{g}_{\text{oF1}} + \bm{g}_{\text{oP1}}} \right) \left(\frac{\bm{g}_{\text{mF2}}}{\bm{g}_{\text{oF2}} + \bm{g}_{\text{oP2}}} \right) \quad \text{BW} = \left(g_{\text{oF1}} + g_{\text{oP1}} \right) \left(\frac{g_{\text{oF2}} + g_{\text{oP2}}}{C_{\text{C}} \ g_{\text{mF2}}} \right) = \frac{g_{\text{oF1}} + g_{\text{oP1}}}{C_{\text{EFF}}}$$

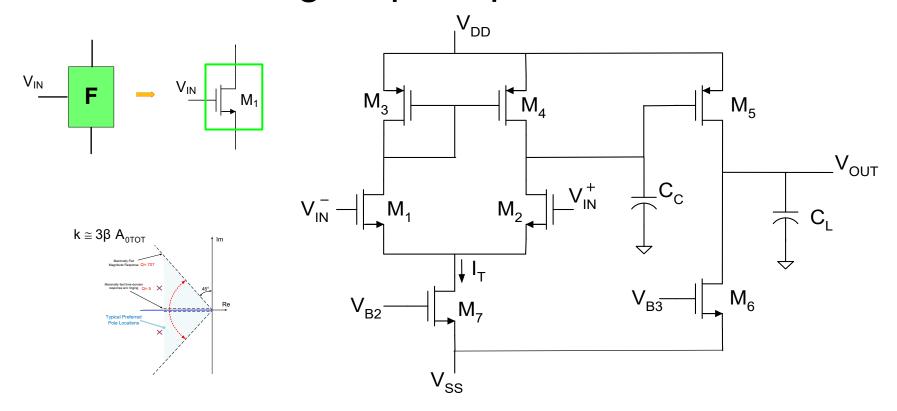
$$GB = \frac{g_{mF1}g_{mF2}}{(g_{oF2} + g_{oP2})C_{c}}$$

$$If zero does not affect GB$$

$$C_{c}$$

Has the GB decreased with the Miller compensation? No, because the C_C decreased by the same factor!

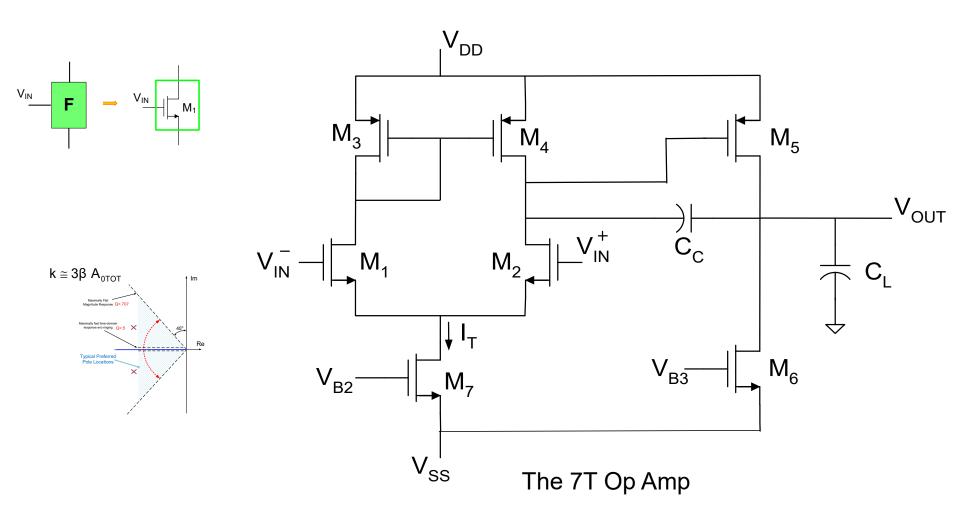
Basic Two-Stage Op Amp



- o Essentially just a cascade of two common-source stages
- o Same gain and pole expressions as developed for the cascade
- o Compensation Capacitor C_C used to get wide pole separation
- Two poles in amplifier
- No universally accepted strategy for designing this seemingly simple amplifier

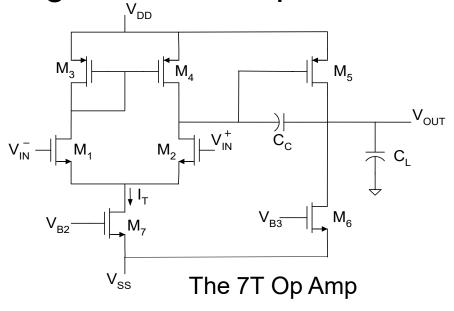
Pole spread $\cong 3 \beta A_{01} A_{02}$ makes C_C unacceptably large

Basic Two-Stage Op Amp (with Miller Compensation)



- o Reduces C_C by approximately A₀₂
- o Pole spread $\approx 3 \beta A_{01} A_{02}$ makes size of C_C manageable
- o One of the most widely used op amp architectures

Basic Two-Stage Miller Compensated Op Amp



By inspection (Notation: $p_1 = -\tilde{p}_1$ $p_2 = -\tilde{p}_2$)

$$\boldsymbol{A_o} = \left(\frac{-\boldsymbol{g_{m1}}}{\boldsymbol{g_{o2}} + \boldsymbol{g_{o4}}}\right) \left(\frac{\boldsymbol{g_{m5}}}{\boldsymbol{g_{o5}} + \boldsymbol{g_{o6}}}\right) \qquad \quad \boldsymbol{\tilde{p}_2} = \frac{\boldsymbol{g_{m5}}}{\boldsymbol{C_l}}$$

$$\tilde{p}_1 = \frac{g_{o2} + g_{o4}}{C_C \left(\frac{g_{m5}}{g_{05} + g_{o6}}\right)}$$
If zero does not affect GB
$$\mathbf{GB} = \frac{\mathbf{g_{m1}}}{\mathbf{C_C}}$$

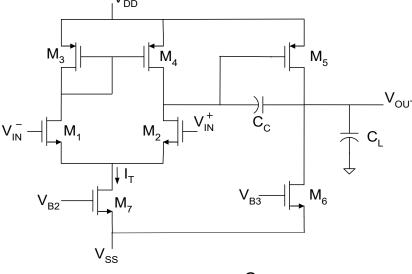
Will also get these results from a more complete (and time consuming) analysis

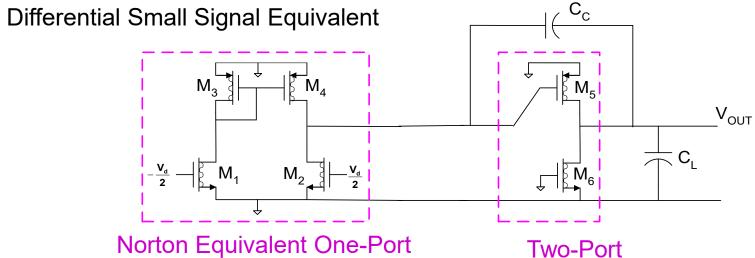
This analysis was based only upon finding the poles and will miss zeros if they exist

Small Signal Analysis of Basic Two-Stage Op Amp

(Will now obtain the actual gain which will show zeros if they exist)

(with Miller compensation)

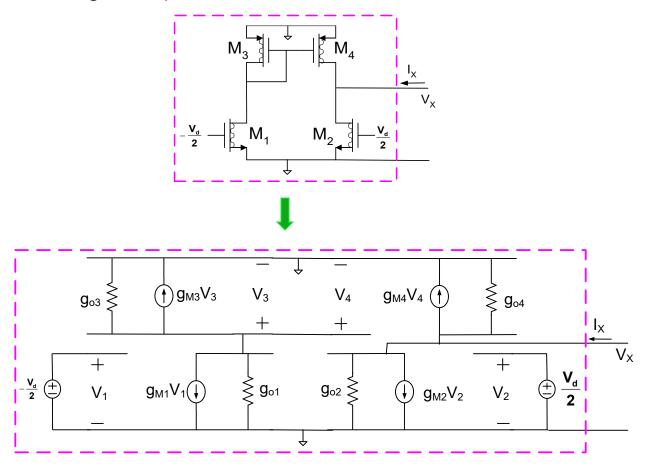




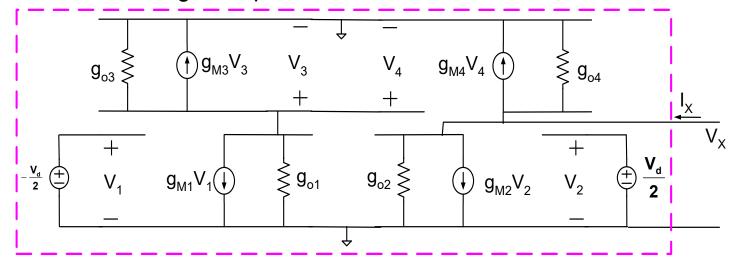
Small Signal Analysis of Basic Two-Stage Op Amp

(with Miller compensation)

Differential Small Signal Equivalent



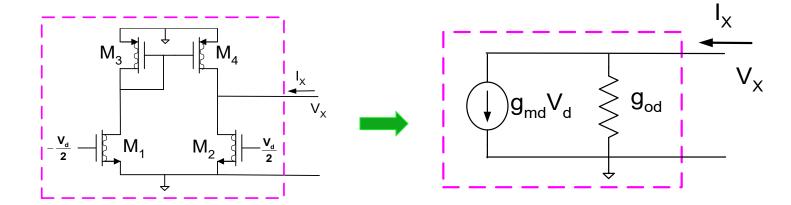
Differential Small Signal Equivalent



$$\begin{split} I_{\chi} &= V_{\chi} \big(g_{o2} + g_{o4} \big) + g_{m2} \frac{V_{d}}{2} + g_{m4} V_{4} \\ V_{4} \big(g_{m3} + g_{o1} + g_{03} \big) + g_{m1} \bigg(-\frac{V_{d}}{2} \bigg) &= 0 \end{split}$$

$$I_{\chi} &= V_{\chi} \big(g_{o2} + g_{04} \big) + g_{m2} V_{d} \frac{1 + \frac{g_{m1}}{g_{m2}} \bigg(\frac{g_{m4}}{g_{m3} + g_{o2} + g_{o3}} \bigg)}{2} \\ I_{\chi} &\cong V_{\chi} \bigg(g_{02} + g_{04} \bigg) + g_{m2} V_{d} \end{split}$$

Differential Small Signal Equivalent



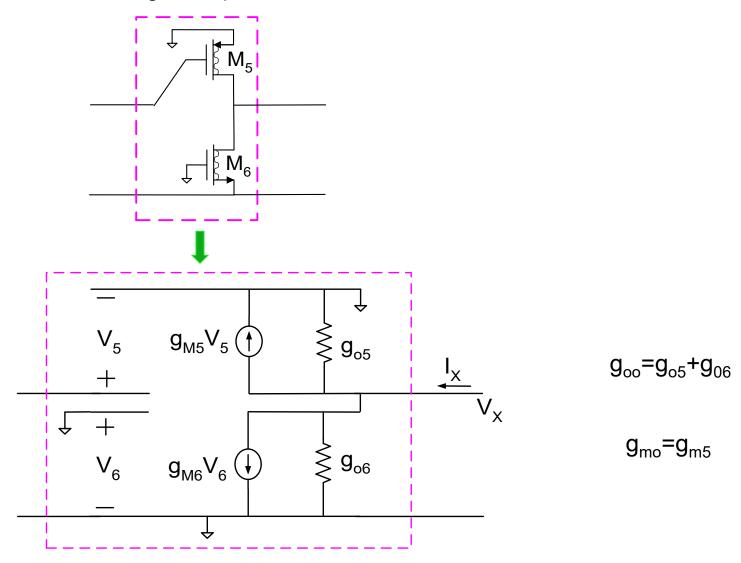
$$I_{\chi} \cong V_{\chi} (g_{02} + g_{04}) + g_{m2} V_{d}$$

Since M₁ and M₂ are matched as are M₃ and M₄

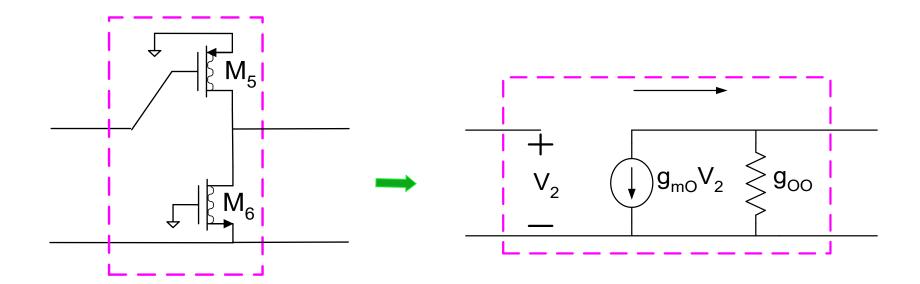
$$g_{md} = g_{m1}$$

 $g_{od} = g_{02} + g_{04}$

Differential Small Signal Equivalent

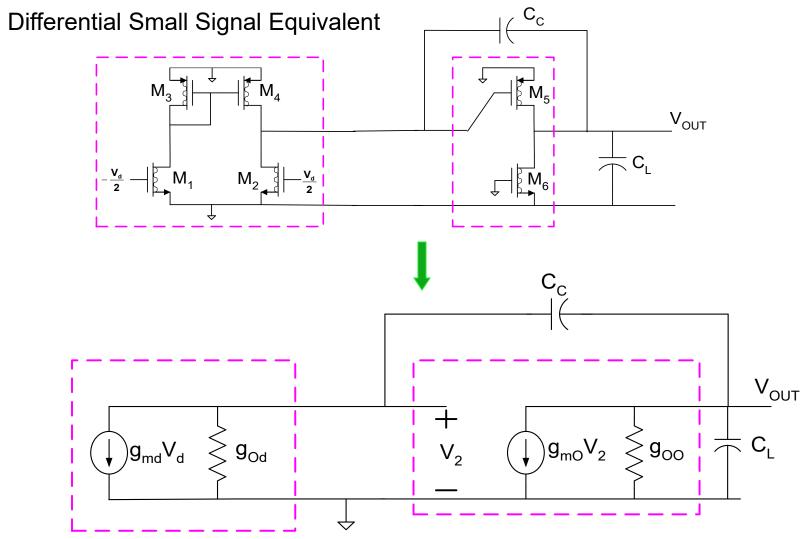


Differential Small Signal Equivalent



Small Signal Analysis of Basic Two-Stage Op Amp

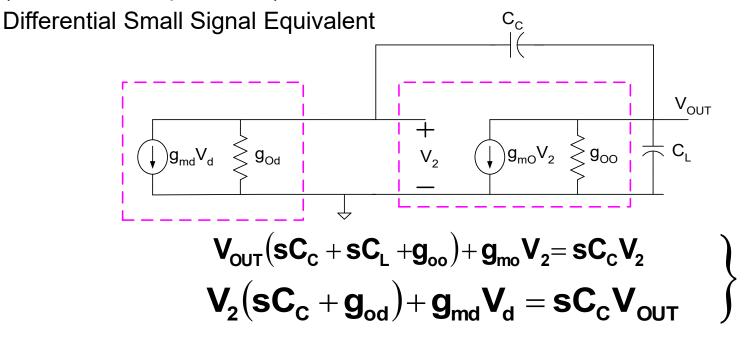
(with Miller compensation)



(This happens to be the general form for quarter circuit and counterpart circuit!)

Small Signal Analysis of Basic Two-Stage Op Amp

(with Miller compensation)



Solving we obtain:

$$\mathbf{V}_{\text{OUT}} = \mathbf{V}_{\text{d}} \frac{\mathbf{g}_{\text{md}} \big(\mathbf{g}_{\text{mo}} - \mathbf{s} \mathbf{C}_{\text{c}}\big)}{\mathbf{s}^2 \mathbf{C}_{\text{c}} \mathbf{C}_{\text{L}} + \mathbf{s} \big[\mathbf{g}_{\text{mo}} \mathbf{C}_{\text{c}} + \big(\mathbf{C}_{\text{c}} \big(\mathbf{g}_{\text{oo}} + \mathbf{g}_{\text{od}}\big) + \mathbf{C}_{\text{L}} \mathbf{g}_{\text{od}}\big)\big] + \mathbf{g}_{\text{oo}} \mathbf{g}_{\text{od}}}$$

This simplifies to:

$$V_{OUT} \cong V_{d} \frac{g_{md}(g_{mo} - sC_{c})}{s^{2}C_{c}C_{L} + sg_{mo}C_{c} + g_{oo}g_{od}}$$

(This happens to be the general form for quarter circuit and counterpart circuit!)

Differential Small Signal Equivalent

Summary:

where
$$A(s) = \frac{g_{md}(g_{mo} - sC_C)}{s^2C_CC_L + sg_{mo}C_C + g_{oo}g_{od}}$$

$$g_{md} = g_{m1} = g_{m2}$$

$$g_{m0} = g_{m5}$$

$$g_{od} = g_{o2} + g_{o4}$$

$$g_{oo} = g_{o5} + g_{o6}$$

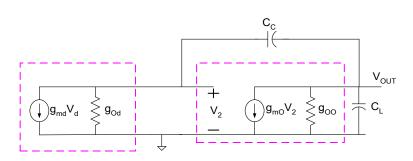
Note presence of single RHP zero!

How does this compare to the approximate analysis that obtained only the poles?

Small Signal Analysis of Basic Two-Stage Op Amp

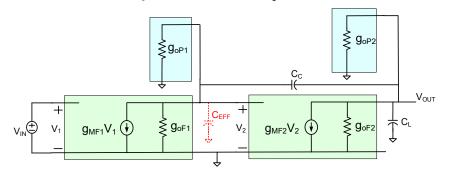
(with Miller compensation)

Detailed analysis



$$A(s) = \frac{g_{md}(g_{mo} - sC_{c})}{s^{2}C_{c}C_{c} + sg_{mo}C_{c} + g_{oo}g_{od}}$$

$$z_1 = \frac{g_{mo}}{C_0}$$



$$egin{aligned} egin{aligned} egin{aligned} egin{aligned} rac{s}{ ilde{z}_1} + 1 \end{pmatrix} g_{mF1} g_{mF2} \ & S^2 C_C C_L + s C_C g_{mF2} + ig(g_{0F1} + g_{0P1} ig) ig(g_{0F2} + g_{0P2} ig) \end{aligned}$$

$$\begin{array}{l} g_{mo} \\ \hline C_{C} \\ \hline \\ g_{m0} = g_{mF1} \\ \hline \\ g_{od} = g_{oF1} + g_{oP1} \\ \hline \\ g_{oo} = g_{oF2} + g_{oP2} \\ \hline \end{array} \qquad \begin{array}{l} p_{1} = -\frac{(g_{oF1} + g_{oP1})(g_{oF2} + g_{oP2})}{C_{C} g_{mF2}} \\ \hline \\ p_{2} = -\frac{g_{mF2}}{C_{L}} \end{array}$$

Same denominator so same poles and also same dc gain!

Small Signal Analysis of Two-Stage Miller-Compensated Op Amp

(with Miller compensation)

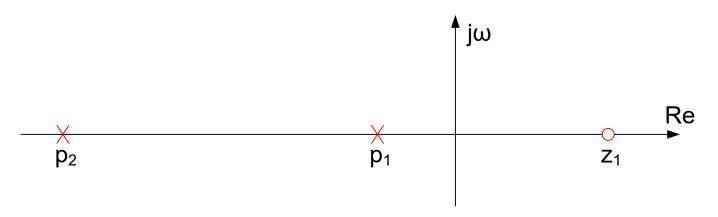
$$A(s) = \frac{g_{md}(g_{m0} - sC_{C})}{s^{2}C_{C}C_{L} + sg_{m0}C_{C} + g_{oo}g_{od}}$$

Note this is of the form:

(Notation:
$$p_1 = -\tilde{p}_1$$
 $p_2 = -\tilde{p}_2$ $z_1 = -\tilde{z}_1$)

$$A(s) = A_0 \frac{\frac{s}{\tilde{z}_1} + 1}{\left(\frac{s}{\tilde{p}_1} + 1\right)\left(\frac{s}{\tilde{p}_2} + 1\right)}$$

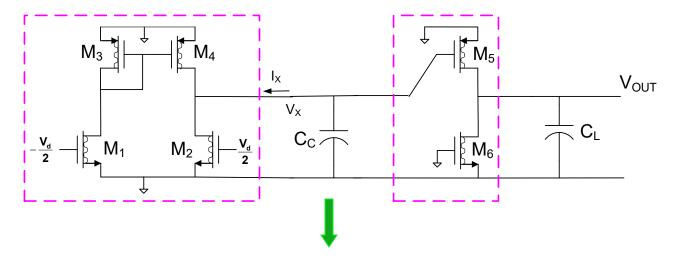
This has two negative real-axis poles and one positive real-axis zero

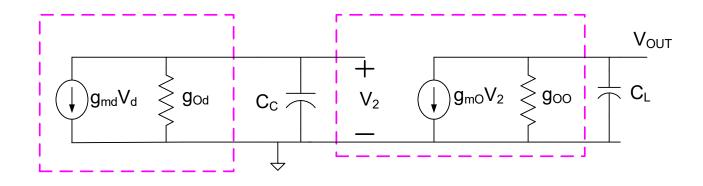


Small Signal Analysis of Basic Two-Stage Op Amp

(with Internal node compensation i.e. not Miller compensation)

Differential Small Signal Equivalent

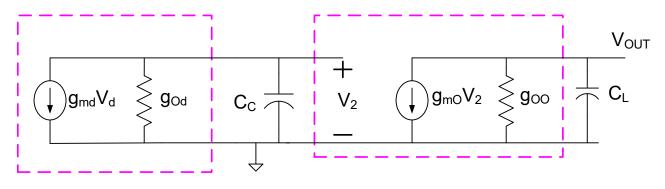




Small Signal Analysis of Basic Two-Stage Op Amp

(with Internal node compensation)

Differential Small Signal Equivalent



$$V_{OUT}(sC_L + g_{00}) + g_{m0}V_2 = 0$$

 $V_2(sC_C + g_{0d}) + g_{md}V_d = 0$

Solving we obtain:

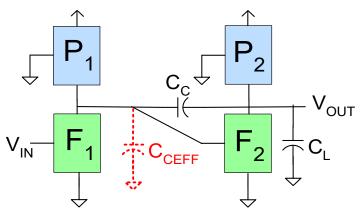
$$V_{OUT} = V_d \frac{g_{m0}g_{md}}{(sC_L + g_{00})(sC_C + g_{0d})}$$

This can be approximated by :

$$V_{OUT} = V_d \frac{g_{m0}g_{md}}{s^2C_CC_L + sC_Cg_{00} + g_{00}g_{0d}}$$

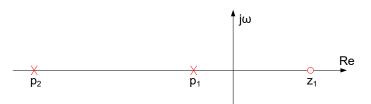
Can show this is the same as was obtained by inspection!

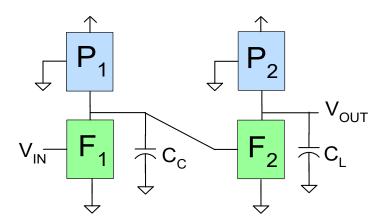
How does the Gain of the Two-Stage Miller-Compensated Op Amp Compare with Internal Compensated Op Amp?



$$A(s) = \frac{g_{md}(g_{m0} - sC_C)}{s^2C_CC_L + sg_{m0}C_C + g_{oo}g_{od}}$$

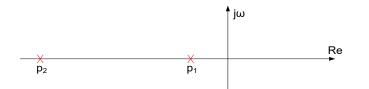
$$A(s) = A_0 \frac{\frac{s}{\tilde{z}_1} + 1}{\left(\frac{s}{\tilde{p}_1} + 1\right)\left(\frac{s}{\tilde{p}_2} + 1\right)}$$





$$A(s) \cong \frac{g_{md}g_{m0}}{s^2C_CC_L + sC_Cg_{oo} + g_{oo}g_{od}}$$

$$A(s) = A_0 \frac{1}{\left(\frac{s}{\tilde{p}_1} + 1\right) \left(\frac{s}{\tilde{p}_2} + 1\right)}$$



Compensation criteria:

must be developed

$$4\beta A_0 > \frac{\rho_2}{\rho_1} > 2\beta A_0$$

Simple pole calculations for 2-stage op amp

Since the poles of the 2-stage op amp must be widely separated, a simple calculation of the poles from the characteristic polynomial is possible.

Assume p_1 and p_2 are the poles and $|p_1| << |p_2|$

D(s)=s²+a₁s+a₀ determines
$$p_1$$
 but
$$D(s)=(s-p_1)(s-p_2)=s^2-s(p_1+p_2)+p_1p_2\approx s^2-p_2s+p_1p_2$$
 thus determines p_2
$$p_2=-a_1 \text{ and } p_1=-a_0/a_1$$

Example

A feedback amplifier has a characteristic polynomial of

$$D(s) = s^2 + 9000s + 1.8E3$$

Without using the quadratic equation, determine the poles by inspection and determine the ratio of the two poles.

solution

A feedback amplifier has a characteristic polynomial of

$$D(s) = s^2 + 9000s + 1.8E3$$

$$D(s) = s^2 + 9000s + 1.8E3$$

$$P_h = -9000$$

$$D(s) = s^2 + 9000s + 1.8E3$$

$$P_L = -2$$

Ratio = 4500

Can now use these results to calculate poles of Basic Two-stage Miller Compensated Op Amp

From small signal analysis:

$$\begin{split} \textbf{A}(\textbf{s}) &= \frac{g_{md} \left(g_{m5} - \textbf{s} \textbf{C}_{c} \right)}{\textbf{s}^{2} \textbf{C}_{c} \textbf{C}_{L} + \textbf{s} g_{m5} \textbf{C}_{c} + \textbf{g}_{oo} \textbf{g}_{od}} \\ p_{2} &= -\frac{g_{m5}}{C_{L}} \end{split} \qquad \begin{aligned} p_{1} &= -\frac{g_{oo} g_{od}}{g_{m5} C_{C}} \\ p_{1} &= -\frac{g_{oo} g_{od}}{g_{m5} C_{C}} \end{aligned} \qquad \begin{aligned} g_{od} &= g_{o2} + g_{o4} \\ g_{oo} &= g_{o5} + g_{o6} \end{aligned}$$

$$q_{oo} &= g_{o5} + g_{o6} \\ q_{oo} &= g_{o5} + g_{o6} \end{aligned}$$

$$q_{oo} &= g_{o5} + g_{o6} \\ q_{oo} &= g_{o5} + g_{o6} \end{aligned}$$

$$q_{oo} &= g_{o5} + g_{o6} \\ q_{oo} &= g_{o5} + g_{o6} \end{aligned}$$

$$q_{oo} &= g_{o5} + g_{o6} \\ q_{oo} &= g_{o5} + g_{o6} \\ q_{oo} &= g_{o5} + g_{o6} \end{aligned}$$

$$q_{oo} &= g_{o5} + g_{o6} \\ q_{oo} &= g_{o5} + g_{o6} \\ q_{oo} &= g_{o5} + g_{o6} \end{aligned}$$

$$q_{oo} &= g_{o5} + g_{o6} \\ q_{oo} &= g_{o5$$

From Previous Inspection

$$A_{o} = \left(\frac{-g_{m1}}{g_{o2} + g_{o4}}\right) \left(\frac{g_{m5}}{g_{o5} + g_{o6}}\right)$$

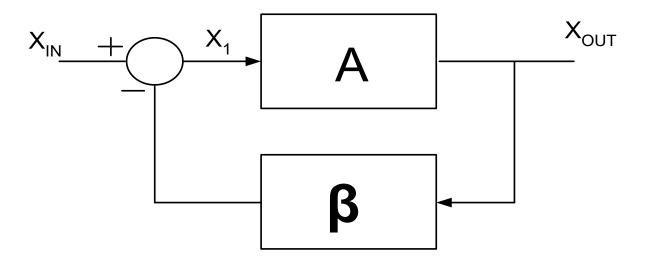
$$p_{1} = -\frac{g_{o2} + g_{o4}}{C_{c}\left(\frac{g_{m5}}{g_{05} + g_{o6}}\right)} \quad p_{2} = -\frac{g_{m5}}{C_{L}}$$

$$V_{B2} = \frac{g_{m1}}{V_{SS}}$$

$$GB = \frac{g_{m1}}{G}$$

Note the simple results obtained from inspection agree with the more time consuming results obtained from a small signal analysis

Feedback applications of the twostage Op Amp



How does the amplifier perform with feedback?

How should the amplifier be compensated?

Feedback applications of the twostage Op Amp

Open-loop Gain

$$A(s) = \frac{N(s)}{D(s)}$$

Standard Feedback Gain

$$X_{N}$$
 + A $X_{O,IT}$

$$A_{FB}(s) = \frac{A(s)}{1 + A(s)\beta(s)} = \frac{N(s)}{D(s) + N(s)\beta(s)} \stackrel{\text{def n}}{=} \frac{N_{FB}(s)}{D_{FB}(s)}$$

$$N_{FB}(s) = N(s)$$

 $D_{FB}(s) = D(s) + \beta(s)N(s)$

- Open-loop and closed-loop zeros identical (for standard feedback gain)
- Closed-loop poles different than open-loop poles
- Often $\beta(s)$ is not dependent upon frequency
- Open-loop zeros, gain, and β play a key role in determining closed-loop poles

Feedback applications of the twostage Op Amp

Open-loop Gain

$$A(s) = \frac{N(s)}{D(s)}$$

Standard Feedback Gain

1

$$A_{FB}(s) = \frac{A(s)}{1 + A(s)\beta(s)} = \frac{\frac{1}{\beta(s)}}{1 + \frac{1}{A(s)\beta(s)}}$$

Alternate Feedback Gain (often FB is not of "standard" form)

eedback Gain (often FB is not of "standard" form)
$$A_{FB}(s) = \frac{\frac{1}{\beta_1(s)}}{1 + \frac{1}{A(s)\beta(s)}} = \frac{\frac{\beta(s)}{\beta_1(s)}N(s)}{D(s) + N(s)\beta(s)}$$

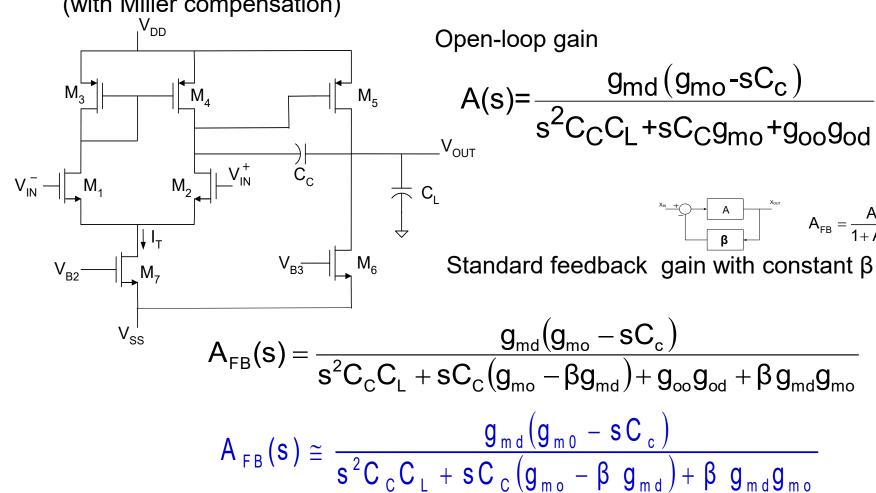
In either case, denominators are the same and characteristic equation defined by

$$D_{FR}(s) = D(s) + \beta(s)N(s)$$

Often $\beta(s)$ and $\beta_1(s)$ are not dependent upon frequency and in this case

$$N_{FB}(s) = N(s)$$

Basic Two-Stage Op Amp with Feedback



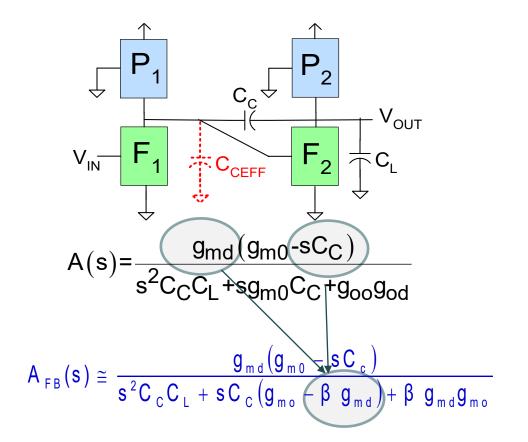
$$g_{md} = g_{m1}$$

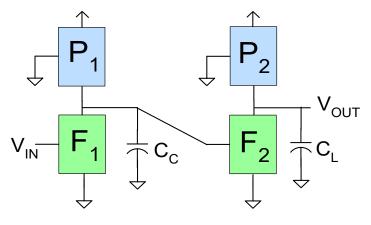
$$g_{od} = g_{o2} + g_{o4}$$

$$g_{mo} = g_{m5}$$

$$g_{oo} = g_{o5} + g_{o6}$$

How does the Gain of the Two-Stage Miller-Compensated Op Amp Compare with Internal Compensated Op Amp with feedback $A_{EP} = \frac{A}{A_{EP}}$



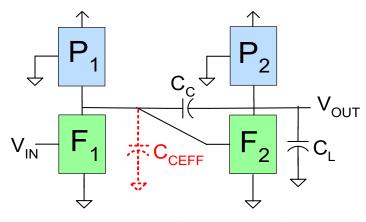


$$A(s) \cong \frac{g_{md}g_{m0}}{s^2C_CC_L + sC_Cg_{oo} + g_{oo}g_{od}}$$

$$A_{FB}(s) \cong \frac{g_{m0}g_{md}}{s^2C_CC_L + sC_Cg_{00} + \beta g_{m0}g_{md}}$$

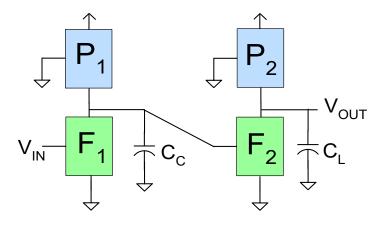
Zero in open-loop gain introduces the $-\beta g_{md}$ term in FB configuration

How was compensation done before the work of Fullagar?



$$A(s) = \frac{g_{md}(g_{m0} - sC_C)}{s^2 C_C C_L + sg_{m0} C_C + g_{oo}g_{od}}$$

$$A_{FB}(s) \cong \frac{g_{md}(g_{m0} - sC_{c})}{s^{2}C_{c}C_{L} + sC_{c}(g_{m0} - \beta g_{md}) + \beta g_{md}g_{m0}}$$



$$A(s) \cong \frac{g_{md}g_{m0}}{s^2C_CC_L + sC_Cg_{oo} + g_{oo}g_{od}}$$

$$A_{FB}(s) \cong rac{g_{m0}g_{md}}{s^2C_{C}C_{L} + sC_{C}g_{00} + \beta g_{m0}g_{md}}$$

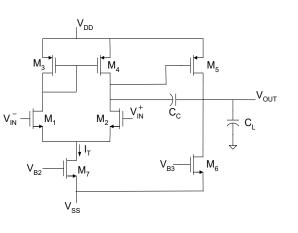
Internal node capacitor C_C or Miller C_C added externally

Or "load compensation" before output buffer added externally

Termed "externally compensated"

Basic Two-Stage Op Amp

(with Miller compensation) $A_{FB} = \frac{A}{1 + A\beta}$



$$A_{FB}(s) \approx \frac{g_{md}(g_{m0} - sC_c)}{s^2C_cC_L + sC_c(g_{mo} - \beta g_{md}) + \beta g_{md}g_{mo}}$$

$$Pole Q = ?$$

Review of Basic Concepts

Consider a second-order factor of a denominator polynomial, P(s), expressed in integer-monic form

$$P(s)=s^2+a_1s+a_0$$

Then P(s) can be expressed in several alternative but equivalent ways

$$s^{2} + s\frac{\omega_{0}}{Q} + \omega_{0}^{2}$$

$$s^{2} + s2\zeta\omega_{0} + \omega_{0}^{2}$$

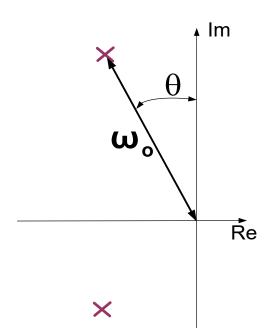
$$(s - p_{1})(s - p_{2})$$
and if complex conjugate poles,
$$(s + \alpha + j\beta)(s + \alpha - j\beta)$$

$$(s - re^{j\theta})(s - re^{-j\theta})$$
and if negative real – axis poles
$$(s - p_{1})(s - kp_{1})$$

These are 7 different 2-paramater characterizations of the second-order factor and it is easy to map from any one characterization to any other!

$$\{a_1 a_0\} \{\omega_0 Q\} \{\omega_0 \zeta\} \{p_1 p_2\} \{\alpha \beta\} \{r \theta\} \{p_1 k\}$$

Review of Basic Concepts



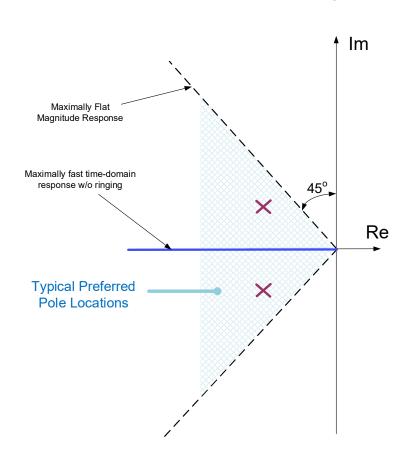
$$s^2 + s \frac{\omega_0}{Q} + \omega_0^2$$

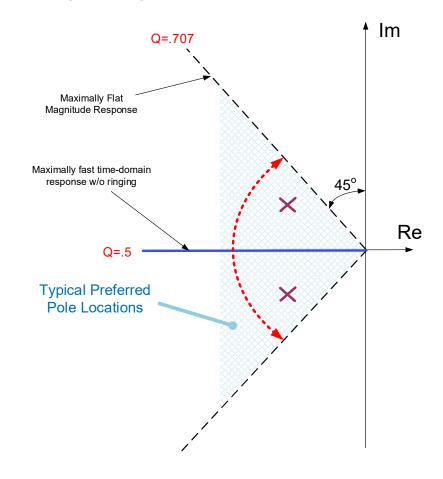
$$\sin\theta = \frac{1}{2Q}$$

 ω_{o} = magnitude of pole Q determines the angle of the pole

Observe: Q=0.5 corresponds to two identical real-axis poles Q=.707 corresponds to poles making 45° angle with Im axis

What closed-loop pole Q is typically required when compensating an op amp?





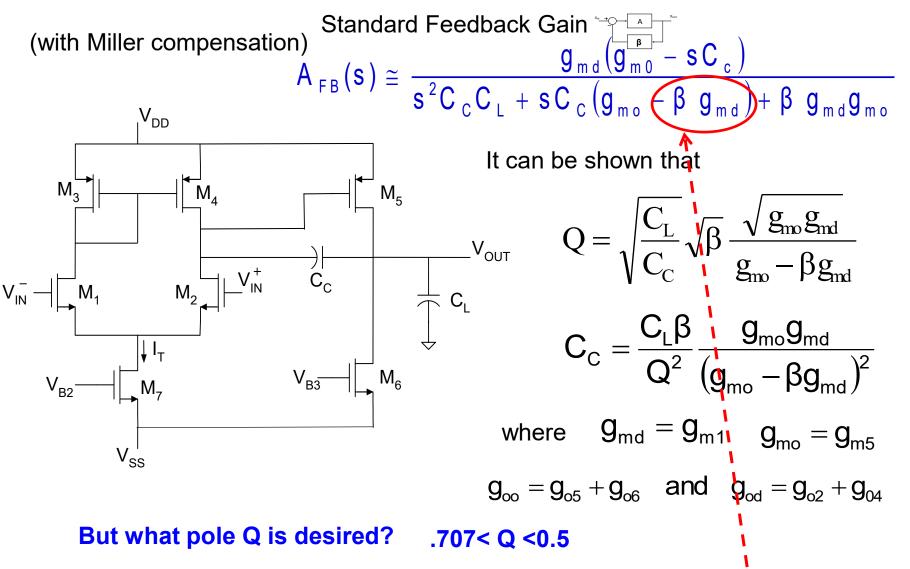
Recall:

Typically compensate so closed-loop poles make angle between 45° and 90° from imaginary axis

Equivalently:

0.5 < Q < .707

Basic Two-Stage Op Amp



Right Half-Plane Zero in OL Gain (from Miller Compensation) Limits Performance

(because it increases the pole Q and thus requires a larger C_C!)

Closed-form expression for C_c!

Basic Two-Stage Op Amp

(with Miller compensation)

Standard Feedback Gain

$$A_{FB}(s) \cong \frac{g_{md}(g_{m0} - sC_{c})}{s^{2}C_{C}C_{L} + sC_{C}(g_{m0} - \beta g_{md}) + \beta g_{md}g_{m0}}$$

$$Q = \sqrt{\frac{C_L}{C_C}} \sqrt{\beta} \frac{\sqrt{g_{mo}g_{md}}}{g_{mo} - \beta g_{md}}$$

$$C_C = \frac{C_L \beta}{Q^2} \frac{g_{mo}g_{md}}{(g_{mo} - \beta g_{md})^2}$$

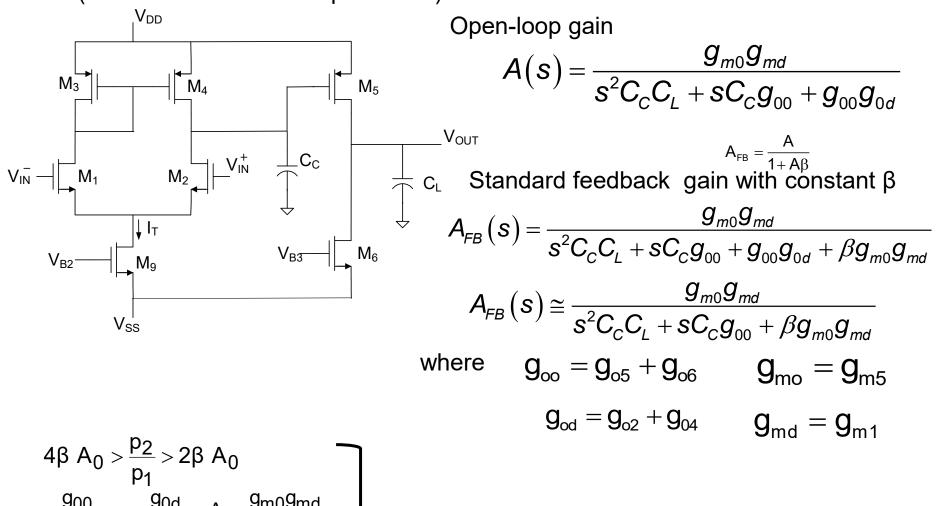
Question: Can we express C_C in terms of the pole spread k instead of in terms of Q?

Recall:
$$Q = \frac{\sqrt{k}}{(1+k)} \sqrt{\beta A_{0TOT}} \quad \underset{\text{klarge}}{\cong} \sqrt{\frac{\beta A_{0TOT}}{k}} \qquad \Longrightarrow \qquad k \underset{\text{klarge}}{\cong} \frac{\beta A_{0TOT}}{Q^2}$$

Relationship between k and Q was developed for 2nd-order lowpass open-loop gain (i.e. no zeros present!)

Basic Two-Stage Op Amp with Feedback

(with Internal Node compensation)



OR

$$4\beta \ A_0 > \frac{p_2}{p_1} > 2\beta \ A_0$$

$$p_2 = \frac{g_{00}}{C_L} \quad p_1 = \frac{g_{0d}}{C_C} \quad A_0 = \frac{g_{m0}g_{md}}{g_{00}g_{0d}}$$

$$C_L 4\beta \frac{g_{m0}g_{md}}{g_{00}^2} > C_C > C_L 2\beta \frac{g_{m0}g_{md}}{g_{00}^2}$$

$$C_{C} = C_{L} \beta \frac{g_{m0} g_{md}}{Q^{2} g_{00}^{2}} = C_{L} \beta \frac{g_{m5} g_{m1}}{Q^{2} (g_{05} + g_{06})^{2}}$$

Status on Compensation

Generally not needed for single-stage op amps

Analytical expressions were developed with $A_{FB} = \frac{A}{1 + A\beta}$ for

Two-stage with internal node compensation (no OL zeros)

Two-stage with load compensation (no OL zeros)

Two-stage with basic Miller compensation (OL zero, single series comp cap)

Will now develop a more general compensation strategy

Stay Safe and Stay Healthy!

End of Lecture 15